domingo, 9 de agosto de 2009

soluciones.. el comienzo

INTRODUCCIÓN
Una solución es una mezcla homogénea de dos o mas sustancias. La sustancia disuelta se denomina soluto y esta presente generalmente en pequeña cantidad en pequeña cantidad en comparación con la sustancia donde se disuelve denominada solvente. en cualquier discusión de soluciones, el primer requisito consiste en poder especificar sus composiciones, esto es, las cantidades relativas de los diversos componentes.
La concentración de una solución expresa la relación de la cantidad de soluto a la cantidad de solvente.
Las soluciones poseen una serie de propiedades que las caracterizan :
1.
Su composición química es variable.
2.
Las propiedades químicas de los componentes de una solución no se alteran.
3.
Las propiedades físicas de la solución son diferentes a las del solvente puro : la adición de un soluto a un solvente aumenta su punto de ebullición y disminuye su punto de congelación; la adición de un soluto a un solvente disminuye la presión de vapor de éste.
PRINCIPALES CLASES DE SOLUCIONES
SOLUCIÓN
DISOLVENTE
SOLUTO
EJEMPLOS
Gaseosa
Gas
Gas
Aire
Liquida
Liquido
Liquido
Alcohol en agua
Liquida
Liquido
Gas
O2 en H2O
Liquida
Liquido
Sólido
NaCl en H2O
SOLUBILIDAD
La solubilidad es la cantidad máxima de un soluto que puede disolverse en una cantidad dada de solvente a una determinada temperatura.
Factores que afectan la solubilidad:
Los factores que afectan la solubilidad son:
a) Superficie de contacto: La interacción soluto-solvente aumenta cuando hay mayor superficie de contacto y el cuerpo se disuelve con más rapidez ( pulverizando el soluto).
b) Agitación: Al agitar la solución se van separando las capas de disolución que se forman del soluto y nuevas moléculas del solvente continúan la disolución
c) Temperatura: Al aument6ar la temperatura se favorece el movimiento de las moléculas y hace que la energía de las partículas del sólido sea alta y puedan abandonar su superficie disolviéndose.
d) Presión: Esta influye en la solubilidad de gases y es directamente proporcional
MODO DE EXPRESAR LAS CONCENTRACIONES
La concentración de las soluciones es la cantidad de soluto contenido en una cantidad determinada de solvente o solución. Los términos diluida o concentrada expresan concentraciones relativas. Para expresar con exactitud la concentración de las soluciones se usan sistemas como los siguientes:
a) Porcentaje peso a peso (% P/P): indica el peso de soluto por cada 100 unidades de peso de la solución.

b) Porcentaje volumen a volumen (% V/V): se refiere al volumen de soluto por cada 100 unidades de volumen de la solución.

c) Porcentaje peso a volumen (% P/V): indica el número de gramos de soluto que hay en cada 100 ml de solución.
d) Fracción molar (Xi): se define como la relación entre las moles de un componente y las moles totales presentes en la solución.
Xsto + Xste = 1
e) Molaridad ( M ): Es el número de moles de soluto contenido en un litro de solución. Una solución 3 molar ( 3 M ) es aquella que contiene tres moles de soluto por litro de solución.
EJEMPLO:* Cuántos gramos de AgNO3 , se necesitan para preparar 100 cm3 de solución 1M?
Previamente sabemos que:
El peso molecular de AgNO3 es:
170 g
=
masa de 1 mol AgNO3
y que
100 de H20 cm3
equivalen
a
100 ml. H20

Usando la definición de molalidad , se tiene que en una solución 1M hay 1 mol de AgNO3 por cada Litro (1000 ml ) de H2O (solvente) es decir:
Utilizando este factor de conversión y los datos anteriores tenemos que:
Se necesitan 17 g de AgNO3 para preparar una solución 1 M
f) Molalidad (m): Es el número de moles de soluto contenidos en un kilogramo de solvente. Una solución formada por 36.5 g de ácido clorhídrico, HCl , y 1000 g de agua es una solución 1 molal (1 m)
EJEMPLO:* Cuántos gramos de AgNO3 , se necesitan para preparar 100 cm3 de solución 1m?
Previamente sabemos que:
El peso molecular de AgNO3 es:
170 g
=
masa de 1 mol AgNO3
y que
100 de H20 cm3
equivalen
a
100 gr. H20

Usando la definición de molalidad , se tiene que en una solución 1m hay 1 mol de AgNO3 por cada kg (1000 g ) de H2O (solvente) es decir:
Utilizando este factor de conversión y los datos anteriores tenemos que:
Se necesitan 17 g de AgNO3 para preparar una solución 1 m, observe que debido a que la densidad del agua es 1.0 g/ml la molaridad y la molalidad del AgNO3 es la misma
g) Normalidad (N): Es el número de equivalentes gramo de soluto contenidos en un litro de solución.
EJEMPLO:* Cuántos gramos de AgNO3 , se necesitan para preparar 100 cm3 de solución 1N?
Previamente sabemos que:
El peso molecular de AgNO3 es:
170 g
=
masa de 1 mol AgNO3
y que
100 de H20 cm3
equivalen
a
100 gr. H20

Usando la definición de molalidad , se tiene que en una solución 1N hay 1 mol de AgNO3 por cada kg (1000 g ) de H2O (solvente) es decir:
Utilizando este factor de conversión y los datos anteriores tenemos que:
El peso equivalente de un compuesto se calcula dividiendo el peso molecular del compuesto por su carga total positiva o negativa.
h) Formalidad (F): Es el cociente entre el número de pesos fórmula gramo (pfg) de soluto que hay por cada litro de solución. Peso fórmula gramo es sinónimo de peso molecular. La molaridad (M) y la formalidad (F) de una solución son numéricamente iguales, pero la unidad formalidad suele preferirse cuando el soluto no tiene un peso molecular definido, ejemplo: en los sólidos iónicos.
SOLUCIONES DE ELECTROLITOS
Electrolitos:
Son sustancias que confieren a una solución la capacidad de conducir la corriente eléctrica. Las sustancias buenas conductoras de la electricidad se llaman electrolitos fuertes y las que conducen la electricidad en mínima cantidad son electrolitos débiles.
Electrolisis:
Son las transformaciones químicas que producen la corriente eléctrica a su paso por las soluciones de electrolitos.
Al pasar la corriente eléctrica, las sales, los ácidos y las bases se ionizan.
EJEMPLOS:
NaCl

Na+
+
Cl-
CaSO4

Ca+2
+
SO4-2
HCl

H+
+
Cl-
AgNO3

Ag+
+
NO3-
NaOH

Na+
+
OH-
Los iones positivos van al polo negativo o cátodo y los negativos al polo positivo o ánodo.
PRODUCTO IÓNICO DEL H2O
El H2O es un electrolito débil. Se disocia así:
H2O
H +
+
OH-
La constante de equilibrio para la disociación del H2O es :
El símbolo [ ] indica la concentración molar
Keq [H2O]
=
[H + ]
+
[OH-].
La concentración del agua sin disociar es elevada y se puede considerar constante.
Valor del producto iónico del H2O( 10-14 moles/litro).
En el agua pura el número de iones H+ y OH- es igual. Experimentalmente se ha demostrado que un litro de agua contiene una diez millonésima del numero H+ e igual de OH-; esto se expresa como 10-7 por tanto, la concentración molar de H+ se expresa asi
[H + ]= 10-7 moles/litro y [OH-] = 10-7; entonces; [H2O] = 10-7 moles / litro [H2O] = 10-14 moles/litro.
Si se conoce la concentración de uno de los iones del H2O se puede calcular la del otro.
EJEMPLO:
Si se agrega un ácido al agua hasta que la concentración del H+ sea de 1 x 104 moles / litro, podemos determinar la concentración de los iones OH-; la presencia del ácido no modifica el producto iónico de H2O:
[H2O]
=
[H + ]
[OH-] =
10-14 de donde
Si se añade una base (NaOH) al H2O hasta que la concentración de iones OH- sea 0.00001 moles/ litro ( 1 X 10-5); se puede calcular la concentración de iones H+.
[H2O]
=
[H + ]
[OH-] =
10-14 de donde;
[H + ]10-5
=
10-14; entonces;


POTENCIAL DE HIDROGENACIÓN O pH
El pH de una solución acuosa es igual al logaritmo negativo de la concentración de iones H+ expresado en moles por litro
Escala de pH;
El pOH es igual al logaritmo negativo de la concentración molar de iones OH. Calcular el pH del agua pura
Log 1.0 x 107
Log 1.0
+
log 107
=
0 + 7 = 7
el pH del agua es 7
EJEMPLO:
Cuál es el pH de una solución de 0.0020 M de HCl?
Log 5 + log 102 = 0.7 + 2 = 2.7
Respuesta: el pH de la solución es de 2.7
INDICADORES
Son sustancias que pueden utilizarse en formas de solución o impregnadas en papeles especiales y que cambian de color según el grado del pH
INDICADOR
MEDIO ÁCIDO
MEDIO BÁSICO
Fenoftaleina
incoloro
rojo
Tornasol
rojo
azul
Rojo congo
azul
rojo
Alizarina
amarillo
rojo naranja
COLOIDES
los coloides son mezclas intermedias entre las soluciones y las mezclas propiamente dichas; sus partículas son de tamaño mayor que el de las soluciones ( 10 a 10.000 Aº se llaman micelas).
Los componentes de un coloide se denominan fase dispersa y medio dispersante. Según la afinidad de los coloides por la fase dispersante se clasifican en liófilos si tienen afinidad y liófobos si no hay afinidad entre la sustancia y el medio.
Clase de coloides según el estado físico
NOMBRE
EJEMPLOS
FASE DISPERSA
MEDIO DISPERSANTE
Aerosol sólido
Polvo en el aire
Sólido
Gas
Geles
Gelatinas, tinta, clara de huevo
Sólido
Liquido
Aerosol liquido
Niebla
Liquido
Gas
Emulsión
leche, mayonesa
Liquido
Liquido
Emulsión sólida
Pinturas, queso
Liquido
Sólido
Espuma
Nubes, esquemas
Gas
Liquido
Espuma sólida
Piedra pómez
Gas
Sólido
PROPIEDADES DE LOS COLOIDES
Las propiedades de los coloides son :
Movimiento browniano: Se observa en un coloide al ultramicroscopio, y se caracteriza por un movimiento de partículas rápido, caótico y continuo; esto se debe al choque de las partículas dispersas con las del medio.
Efecto de Tyndall Es una propiedad óptica de los coloides y consiste en la difracción de los rayos de luz que pasan a través de un coloide. Esto no ocurre en otras sustancias.
Adsorción : Los coloides son excelentes adsorbentes debido al tamaño pequeño de las partículas y a la superficie grande. EJEMPLO: el carbón activado tiene gran adsorción, por tanto, se usa en los extractores de olores; esta propiedad se usa también en cromatografía.
Carga eléctrica : Las partículas presentan cargas eléctricas positivas o negativas. Si se trasladan al mismo tiempo hacia el polo positivo se denomina anaforesis; si ocurre el movimiento hacia el polo negativo, cataforesis.

tablas...







viernes, 12 de junio de 2009

Unidad II: El Atomo y la Tabla Periodica


Tabla Periodica

Tabla periódica de los elementos

La tabla periódica de los elementos es la organización que, atendiendo a diversos criterios, distribuye los distintos elementos químicos conforme a ciertas características.
Suele atribuirse la tabla a Dimitri Mendeleiev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos.
Historia
La historia de la tabla periódica está íntimamente relacionada con varias cosas, clave para el desarrollo de la química y la física:
el descubrimiento de los elementos de la tabla periódica
el estudio de las propiedades comunes y la clasificación de los elementos
la noción de masa atómica (inicialmente denominada "peso atómico") y, posteriormente, ya en el siglo XX, de número atómico y
las relaciones entre la masa atómica (y, más adelante, el número atómico) y las propiedades periódicas de los elementos.

El descubrimiento de los elementos
Aunque algunos elementos como el oro (Au), plata (Ag), cobre (Cu), plomo (Pb) y el mercurio (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII cuando el alquimista Henning Brand descubrió el fósforo (P). En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química neumática: oxígeno (O), hidrógeno (H) y nitrógeno (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a Antoine Lavoisier a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino-térreos, sobre todo gracias a los trabajos de Humphry Davy. En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con la invención del espectroscopio, se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (Cs, del latín caesĭus, azul), talio (Tl, de tallo, por su color verde), rubidio (Rb, rojo), etc.

La noción de elemento y las propiedades periódicas
Lógicamente, un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes 2 siglos, se fue adquiriendo un gran conocimiento sobre estas propiedades, así como descubriendo muchos nuevos elementos. La palabra "elemento" procede de la ciencia griega pero su noción moderna apareció a lo largo del siglo XVII, aunque no existe un consenso claro respecto al proceso que condujo a su consolidación y uso generalizado. Algunos autores citan como precedente la frase de Robert Boyle en su famosa obra "The Sceptical Chymist", donde denomina elementos "ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos". En realidad, esa frase aparece en el contexto de la crítica de Roberto Boe a los cuatro elementos aristotélicos. A lo largo del siglo XVIII, las tablas de afinidad recogieron un nuevo modo de entender la composición química, que aparece claramente expuesto por Lavoisier en su obra "Tratado elemental de Química". Todo ello condujo a diferenciar en primer lugar qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlos.
El descubrimiento de un gran número de nuevos elementos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación.

Los pesos atómicos
A principios del siglo XIX, John Dalton (1766-1844) desarrolló una nueva concepción del atomismo, al que llegó gracias a sus estudios meteorológicos y de los gases de la atmósfera. Su principal aportación consistió en la formulación de un "atomismo químico" que permitía integrar la nueva definición de elemento realizada por Antoine Lavoisier (1743-1794) y las leyes ponderales de la química (proporciones definidas, proporciones múltiples, proporciones recíprocas). Dalton empleó los conocimientos sobre las proporciones en las que reaccionaban las sustancias de su época y realizó algunas suposiciones sobre el modo cómo se combinaban los átomos de las mismas. Estableció como unidad de referencia la masa de un átomo de hidrógeno (aunque se sugirieron otros en esos años) y refirió el resto de los valores a esta unidad, por lo que pudo construir un sistema de masas atómicas relativas. Por ejemplo, en el caso del oxígeno, Dalton partió de la suposición de que el agua era un compuesto binario, formado por un átomo de hidrógeno y otro de oxígeno. No tenía ningún modo de comprobar este punto, por lo que tuvo que aceptar esta posibilidad como una hipótesis a priori. Dalton conocía que 1 parte de hidrógeno se combinaba con 7 partes (8 afirmaríamos en la actualidad) de oxígeno para producir agua. Por lo tanto, si la combinación se producía átomo a átomo, es decir, un átomo de hidrógeno se combinaba con un átomo de wolframio, la relación entre las masas de estos átomos debía ser 1:7 (o 1:8 se calcularía en la actualidad). El resultado fue la primera tabla de masas atómicas relativas (o pesos atómicos como los llamaba Dalton) que fue posteriormente modificada y desarrollada en los años posteriores. Las incertidumbres antes mencionadas dieron lugar a toda una serie de polémicas y disparidades respecto a las fórmulas y los pesos atómicos que sólo comenzarían a superarse, aunque no totalmente, con el congreso de Karlsruhe en 1860.

Metales, no metales y metaloides
La primera clasificación de elementos conocida fue propuesta por Antoine Lavoisier, quien propuso que los elementos se clasificaran en metales, no metales y metaloides o metales de transición. Aunque muy práctico y todavía funcional en la tabla periódica moderna, fue rechazada debido a que había muchas diferencias en las propiedades físicas como químicas.

Triadas de Döbereiner
Uno de los primeros intentos para agrupar los elementos de propiedades análogas y relacionarlo con los pesos atómicos se debe al químico alemán Johann Wolfgang Döbereiner(1780-1849) quien en 1817 puso de manifiesto el notable parecido que existía entre las propiedades de ciertos grupos de tres elementos, con una variación gradual del primero al último. Posteriormente (1827) señaló la existencia de otros grupos de tres elementos en los que se daba la misma relación (cloro, bromo y yodo; azufre, selenio y telurio; litio, sodio y potasio).
Triadas de Döbereiner
Litio
LiClLiOH
Calcio
CaCl2CaSO4
Azufre
H2SSO2
Sodio
NaClNaOH
Estroncio
SrCl2SrSO4
Selenio
H2SeSeO2
Potasio
KClKOH
Bario
BaCl2BaSO4
Telurio
H2TeTeO2
A estos grupos de tres elementos se les denominó triadas y hacia 1850 ya se habían encontrado unas 20, lo que indicaba una cierta regularidad entre los elementos químicos.
Döbereiner intentó relacionar las propiedades químicas de estos elementos (y de sus compuestos) con los pesos atómicos, observando una gran analogía entre ellos, y una variación gradual del primero al último.
En su clasificación de las triadas (agrupación de tres elementos) Döbereiner explicaba que el peso atómico promedio de los pesos de los elementos extremos, es parecido al peso atómico del elemento de en medio. Por ejemplo, para la triada Cloro, Bromo, Yodo los pesos atómicos son respectivamente 36, 80 y 127; si sumamos 36 + 127 y dividimos entre dos, obtenemos 81, que es aproximadamente 80 y si le damos un vistazo a nuestra tabla periódica el elemento con el peso atómico aproximado a 80 es el bromo lo cual hace que concuerde un aparente ordenamiento de triadas.

Chancourtois
En 1864, Chancourtois construyó una hélice de papel, en la que se estaban ordenados por pesos atómicos (masa atómica) los elementos conocidos, arrollada sobre un cilindro vertical. Se encontraba que los puntos correspondientes estaban separados unas 16 unidades. Los elementos similares estaban prácticamente sobre la misma generatriz, lo que indicaba una cierta periodicidad, pero su diagrama pareció muy complicado y recibió poca atención.

Ley de las octavas de Newlands
En 1864, el químico inglés John Alexander Reina Newlands comunicó al Real Colegio de Química su observación de que al ordenar los elementos en orden creciente de sus pesos atómicos (prescindiendo del hidrógeno), el octavo elemento a partir de cualquier otro tenía unas propiedades muy similares al primero. En esta época, los llamados gases nobles no habían sido aún descubiertos.
Ley de las octavas de Newlands
1
2
3
4
5
6
7
Li6,9Na23,0K39,0
Be9,0Mg24,3Ca40,0
B10,8Al27,0
C12,0Si28,1
N14,0P31,0
O16,0S32,1
F19,0Cl35,5
Esta ley mostraba una cierta ordenación de los elementos en familias (grupos), con propiedades muy parecidas entre sí y en Periodos, formados por ocho elementos cuyas propiedades iban variando progresivamente.
El nombre de octavas se basa en la intención de Newlands de relacionar estas propiedades con la que existe en la escala de las notas musicales, por lo que dio a su descubrimiento el nombre de ley de las octavas.
Como a partir del calcio dejaba de cumplirse esta regla, esta ordenación no fue apreciada por la comunidad científica que lo menospreció y ridiculizó, hasta que 23 años más tarde fue reconocido por la Royal Society, que concedió a Newlands su más alta condecoración, la medalla Davy.

Tabla periódica de Mendeleiev
La tabla periódica de los elementos fue propuesta por Dimitri Mendeleiev y Julius Lothar Meyer quienes, trabajando por separado, prepararon una ordenación de todos los 64 elementos conocidos, basándose en la variación de las propiedades químicas (Mendeleiev) y físicas (Meyer) con la variación de sus masas atómicas. A diferencia de lo que había supuesto Newlands, en la Tabla periódica de Mendeleiev los periodos (filas diagonales y oblicuas) no tenían siempre la misma longitud, pero a lo largo de los mismos había una variación gradual de las propiedades, de tal forma que los elementos de un mismo grupo o familia se correspondían en los diferentes periodos. Esta tabla fue publicada en 1869, sobre la base de que las propiedades de los elementos son función periódica de sus pesos atómicos.

La noción de número atómico y la mecánica cuántica
La tabla periódica de Mendeléiev presentaba ciertas irregularidades y problemas. En las décadas posteriores tuvo que integrar los descubrimientos de los gases nobles, las "tierras raras" y los elementos radioactivos. Otro problema adicional eran las irregularidades que existían para compaginar el criterio de ordenación por peso atómico creciente y la agrupación por familias con propiedades químicas comunes. Ejemplos de esta dificultad se encuentran en las parejas telurio-yodo, argon-potasio y cobalto-niquel, en las que se hace necesario alterar el criterio de pesos atómicos crecientes en favor de la agrupación en familias con propiedades químicas semejantes. Durante algún tiempo, esta cuestión no pudo resolverse satisfactoriamente hasta que Henry Moseley (1867-1919) realizó un estudio sobre los espectros de rayos X en 1913. Moseley comprobó que al representar la raíz cuadrada de la frecuencia de la radiación en función del número de orden en el sistema periódico se obtenía una recta, lo cual permitía pensar que este orden no era casual sino reflejo de alguna propiedad de la estructura atómica. Hoy sabemos que esa propiedad es el número atómico (Z) o número de cargas positivas del núcleo. La explicación que aceptamos actualmente de la "ley periódica" descubierta por los químicos de mediados del siglo pasado surgió tras los desarrollos teóricos producidos en el primer tercio del siglo XX. En el primer tercio del siglo XX se construyó la mecánica cuántica. Gracias a estas investigaciones y a los desarrollos posteriores, hoy se acepta que la ordenación de los elementos en el sistema periódico está relacionada con la estructura electrónica de los átomos de los diversos elementos, a partir de la cual se pueden predecir sus diferentes propiedades químicas.
106 elementos:
Tabla periódica de los elementos
Grupo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
I
II
III
IV
V
VI
VII
VIII
Periodo
1
1H
2He
2
3Li
4Be
5B
6C
7N
8O
9F
10Ne
3
11Na
12Mg
13Al
14Si
15P
16S
17Cl
18Ar
4
19K
20Ca
21Sc
22Ti
23V
24Cr
25Mn
26Fe
27Co
28Ni
29Cu
30Zn
31Ga
32Ge
33As
34Se
35Br
36Kr
5
37Rb
38Sr
39Y
40Zr
41Nb
42Mo
43Tc
44Ru
45Rh
46Pd
47Ag
48Cd
49In
50Sn
51Sb
52Te
53I
54Xe
6
55Cs
56Ba
*
72Hf
73Ta
74W
75Re
76Os
77Ir
78Pt
79Au
80Hg
81Tl
82Pb
83Bi
84Po
85At
86Rn
7
87Fr
88Ra
**
104Rf
105Db
106Sg
Lantánidos
*
57La
58Ce
59Pr
60Nd
61Pm
62Sm
63Eu
64Gd
65Tb
66Dy
67Ho
68Er
69Tm
70Yb
71Lu
Actínidos
**
89Ac
90Th
91Pa
92U
93Np
94Pu
95Am
96Cm
97Bk
98Cf
99Es
100Fm
101Md
102No
103Lr
Alcalinos
Alcalinotérreos
Lantánidos
Actínidos
Metales de transición
Metales del bloque p
Metaloides
No metales
Halógenos
Gases nobles

Grupos
A las columnas verticales de la tabla periódica se les conoce como grupos. Todos los elementos que pertenecen a un grupo tienen la misma valencia, y por ello, tienen características o propiedades similares entre sí. Por ejemplo, los elementos en el grupo IA tienen valencia de 1 (un electrón en su último nivel de energía) y todos tienden a perder ese electrón al enlazarse como iones positivos de +1. Los elementos en el último grupo de la derecha son los gases nobles, los cuales tienen lleno su último nivel de energía (regla del octeto) y, por ello, son todos extremadamente no reactivos.
Numerados de izquierda a derecha, los grupos de la tabla periódica son:
Grupo 1 (IA): los metales alcalinos
Grupo 2 (IIA): los metales alcalinotérreos
Grupo 3 al Grupo 12: los metales de transición , metales nobles y metales mansos
Grupo 13 (IIIA): los térreos
Grupo 14 (IVA): los carbonoideos
Grupo 15 (VA): los nitrogenoideos
Grupo 16 (VIA): los calcógenos o anfígenos
Grupo 17 (VIIA): los halógenos
Grupo 18 (VIIIA): los gases nobles

Períodos
Artículo principal: Períodos de la tabla periódica
Las filas horizontales de la tabla periódica son llamadas períodos. Contrario a como ocurre en el caso de los grupos de la tabla periódica, los elementos que componen una misma fila tienen propiedades diferentes pero masas similares: todos los elementos de un período tienen el mismo número de orbitales. Siguiendo esa norma, cada elemento se coloca según su configuración electrónica. El primer período solo tiene dos miembros: hidrógeno y helio; ambos tienen sólo el orbital 1s.
La tabla periódica consta de 7 períodos:
Período 1
Período 2
Período 3
Período 4
Período 5
Período 6
Período 7
La tabla también esta dividida en cuatro grupos, s, p, d, f, que están ubicados en el orden sdp, de izquierda a derecha, y f lantánidos y actínidos. Esto depende de la letra en terminación de los elementos de este grupo, según el principio de Aufbau.

Otras formas de representar la tabla periódica
Varias formas (en espiral, en 3D) [1];
1951. Forma en espiral, [2] ;
1960. Forma en espiral, profesor Theodor Benfey[3];
1995. Forma en espiral-fractal, Melinda E Green *[4];
2004, noviembre. Forma en espiral sobre dibujo de galaxia, Philip J. Stewart [5];

miércoles, 10 de junio de 2009

Configuracion Electronica

Pagina q te llevara a las diapositivas q mando Roberto.... a lo mejor te pida la clave del correo pero tu te la sabes ya... solo te pongo esto, por mas comodidad... cuidate.!
La pagina es : http://mail.live.com/default.aspx?wa=wsignin1.0
Configuración electrónica

En Química Cuántica, la configuración electrónica es el modo en el cual los electrones están ordenados en un átomo, molécula o en otra estructura física, de acuerdo con la aproximación orbital en la cual la función de onda del sistema se expresa como un producto de orbitales antisimetrizado.[1] [2] Como los electrones son fermiones están sujetos al principio de exclusión de Pauli, que dice que dos fermiones no pueden estar en el mismo estado cuántico a la vez. Por lo tanto, en el momento en que un estado es ocupado por un electrón, el siguiente electrón debe ocupar un estado mecanocuántico diferente.
En los átomos, los estados estacionarios de la función de onda de un electrón (los estados que son función propia de la ecuación de Schrödinger HΨ = EΨ en donde H es el hamiltoniano monoelectrónico correspondiente) se denominan orbitales atómicos, por analogía con la imagen clásica de los electrones orbitando alrededor del núcleo. Estos estados se pueden describir mediante cuatro números cuánticos: n, l, m y ms, y, en resumen, el principio de exclusión de Pauli implica que no puede haber dos electrones en un mismo átomo con los cuatro valores de los números cuánticos iguales.
De acuerdo con este modelo, los electrones pueden pasar de un nivel de energía orbital a otro ya sea emitiendo o absorbiendo un cuanto de energía, en forma de fotón. Debido al principio de exclusión de Pauli, no más de dos electrones pueden ocupar el mismo orbital y, por tanto, la transición se produce a un orbital en el cual hay una vacante.
Valores de los números cuánticos
Artículo principal: Números cuánticos
En el caso de los orbitales de los átomos hidrogenoides el número cuántico principal n está asociado a los diferentes niveles de energía orbital permitidos o niveles cuánticos; los valores que toma son 1, 2, 3, 4,... Para n=1 se tiene el nivel de menor energía. Todos los estados con el mismo número cuántico principal forman una capa (o nivel). Por razones históricas, estas capas electrónicas (por ejemplo en espectroscopia de rayos X) también se denotan como K, L, M, N,... El segundo número cuántico l corresponde al momento angular del estado. Estos estados tienen la forma de armónicos esféricos, y por lo tanto se describen usando polinomios de Legendre. También por razones históricas a estas subcapas (o subniveles), se les asigna una letra, que hace referencia al tipo de orbital que describe el estado electrónico (s, p, d, f, ...).
Los valores que puede tomar l son: 0, 1, 2, ..., (n-1), siendo n el número cuántico principal. El tercer número cuántico, m, puede tomar los valores desde -l a l, y por lo tanto hay un total de 2l+1 estados degenerados posibles. Cada uno de éstos puede ser ocupado por dos electrones con espines opuestos, consecuencia de los dos posibles valores de la proyección sobre el eje z del espín electrónico, ms, que puede tomar los valores +1/2 ó -1/2. Esto da un total de 2(2l+1) electrones en total (tal como se puede ver en la tabla anterior).

Valor de l
Letra
Máximo númerode electrones
0
s
2
1
p
6
2
d
10
3
f
14
Número cuántico
Valores posibles
n
1, 2, 3,...
l
0,..., (n-1)
m
-l,..., 0,....,+l (2l+1)
ms
-1/2, +1/2

Notación
Artículo principal: Orbital atómico
En Física y Química se utiliza una notación estándar para describir las configuraciones electrónicas de átomos y moléculas. Para los átomos, la notación contiene la definición de los orbitales atómicos (en la forma n l, por ejemplo 1s, 2p, 3d, 4f) indicando el número de electrones asignado a cada orbital (o al conjunto de orbitales de la misma subcapa) como un superíndice. Por ejemplo, el hidrógeno tiene un electrón en el orbital s de la primera capa, de ahí que su configuración electrónica se escriba 1s1. El litio tiene dos electrones en la subcapa 1s y uno en la subcapa 2s (de mayor energía), de ahí que su configuración electrónica se escriba 1s2 2s1 (pronunciándose "uno-s-dos, dos-s-uno"). Para el fósforo (número atómico 15), tenemos: 1s2 2s2 2p6 3s2 3p3.
Para átomos con muchos electrones, esta notación puede ser muy larga por lo que se utiliza una notación abreviada, que tiene en cuenta que las primeras subcapas son iguales a las de algún gas noble. Por ejemplo, el fósforo, difiere del neón (1s2 2s2 2p6) únicamente por la presencia de la tercera capa. Así, la configuración electrónica del fósforo se puede escribir respecto de la del neón como: [Ne] 3s2 3p3. Esta notación es útil si tenemos en cuenta que la mayor parte de las propiedades químicas de los elementos vienen determinadas por las capas más externas.
El orden en el que se escriben los orbitales viene dado por la estabilidad relativa de los orbitales, escribiéndose primero aquellos que tienen menor energía orbital. Esto significa que, aunque sigue unas pautas generales, se pueden producir excepciones. La mayor parte de los átomos siguen el orden dado por la regla de Madelung. Así, de acuerdo con esta regla, la configuración electrónica del hierro se escribe como: [Ar] 4s2 3d6. Otra posible notación agrupa primero los orbitales con el mismo número cuántico n, de tal manera que la configuración del hierro se expresa como [Ar] 3d6 4s2 (agrupando el orbital 3d con los 3s y 3p que están implicitos en la configuración del argón).
El superíndice 1 de los orbitales ocupados por un único electrón no es obligatorio.[3] Es bastante común ver las letras de los orbitales escritas en letra itálica o cursiva. Sin embargo, la Unión Internacional de Química Pura y Aplicada (IUPAC) recomienda utilizar letra normal, tal y como se realiza aquí.
Historia
Niels Bohr fue el primero en proponer (1923) que la periodicidad en las propiedades de los elementos se podía explicar mediante la estructura electrónica del átomo.[4] Su propuesta se basó en el modelo atómico de Bohr para el átomo, en el cual las capas electrónicas eran órbitas electrónicas a distancias fijas al núcleo. Las configuraciones originales de Bohr hoy parecen extrañas para el químico: al azufre se le asignaba una configuración 2.4.4.6 en vez de 1s2 2s2 2p6 3s2 3p4.
Un año después, E. C. Stoner incorpora el tercer número cuántico de la teoría de Sommerfeld en la descripción de las capas electrónicas, y predice correctamente la estructura de capas del azufre como 2.8.6.[5] Sin embargo, ni el sistema de Bohr ni el de Casey Stoner podían describir correctamente los cambios del espectro atómico en un campo magnético (efecto Zeeman)






Distribución electrónica

Es la distribución de los electrones en los subniveles y orbitales de un átomo. La configuración electrónica de los elementos se rige según el diagrama de Moeller:
1s/ 2s 2p/ 3s 3p 4s/ 3d 4p 5s/ 4d 5p 6s/ 4f 5d 6p 7s/ 5f 6d 7p/ ...
Este principio de construcción (denominado principio de Aufbau, del Alemán Aufbau que significa 'construcción') fue una parte importante del concepto original de Bohr de configuración electrónica. Puede formularse como:[6]
sólo se pueden ocupar los orbitales con un máximo de dos electrones, en orden creciente de energía orbital: los orbitales de menor energía se llenan antes que los de mayor energía.
Asi, vemos que se puede utilizar el orden de energías de los orbitales para describir la estructura electrónica de los átomos de los elementos. Un subnivel s se puede llenar con 1 ó 2 electrones. El subnivel p, puede contener de 1 a 6 electrones; el subnivel d de 1 a 10 electrones y el subnivel f de 1 a 14 electrones. Ahora es posible describir la estructura electrónica de los átomos estableciendo el subnivel o distribución orbital de los electrones. Los electrones se colocan, primero, en los subniveles de menor energía, y cuando estos están completamente ocupados, se usa el siguiente subnivel de energía más alto.
Para determinar la configuración electrónica de un elemento, solo hay que decidir cuantos electrones hay que acomodar y entonces distribuirlos en los subniveles empezando con los de menor energía e ir llenando hasta que todos los electrones estén distribuidos. Un elemento con número atómico más grande tiene un electrón más que el elemento que lo precede. El subnivel de energía aumenta de esta manera:

Subnivel S, P, D ó F: Aumenta el nivel de energía.
Sin embargo, existen excepciones como ocurre en los elementos de transición al ubicarnos en los grupos del cromo y del cobre, en los que se promueve el electrón dando así una configuración fuera de lo común.

Bloques de la tabla periódica
La forma de la tabla periodica está intimamente relacionada con la configuración electrónica de los átomos de los elementos. Por ejemplo, todos los elementos del grupo 2 tienen una configuración de [E] ns2 (donde [E] es la configuración del gas inerte correspondiente), y tienen una gran semejanza en sus propiedades químicas. La capa electrónica más externa se denomina "capa de valencia" y (en una primera aproximación) determina las propiedades químicas. Conviene recordadar que el hecho de que las propiedades químicas eran similares para los elementos de un grupo fue descubierto hace más de un siglo, antes incluso de aparecer la idea de configuración electrónica.[7] No está claro como explica la regla de Madelung (que más bien describe) la tabla periodica,[8] ya que algunas propiedades (tales como el estado de oxidación +2 en la primera fila de los metales de transición) serían diferentes con un orden de llenado de orbitales distinto.
Regla de exclusion de Pauli
Esta regla nos dice que en un orbital o spin sólo lo puede ocupar un electrón es en este caso en donde sale lo de los valores del spin o giro de los electrones en el que son (-1/2). También de que en una orientación deben de caber dos electrones excepto cuando el número de electrones se han acabado por lo cual el orden que deben de seguir este ordenamiento es primero los de spin negativo (-1/2) y luego los positivos, esto es en cada nivel.
Regla del octeto
Para que un átomo sea estable debe tener todos sus orbitales llenos (cada orbital con dos electrones, uno de spin +1/2 y otro de spin -1/2) Por ejemplo, el oxígeno, que tiene configuración electrónica 1s², 2s², 2p4, debe llegar a la configuración 1s², 2s², 2p6 con la cual los niveles 1 y 2 estarían llenos. Recordemos que la Regla del octeto, justamente establece que el nivel electrónico se completa con 8 electrones, excepto el Hidrógeno, que se completa con 2 electrones. Entonces el oxígeno tendrá la tendencia a ganar los 2 electrones que le faltan, por esto se combina con 2 átomos de hidrógenos (en el caso del agua, por ejemplo), que cada uno necesita 1 electrón (el cual recibe del oxígeno) y otorga a dicho átomo 1 electrón cada uno. De este modo, cada hidrógeno completó el nivel 1 y el oxígeno completó el nivel 2.
En química se denomina orbital a la zona del espacio que rodea a un núcleo atómico donde la probabilidad de encontrar un electrón es máxima, cercana al 91%. Ejemplo de ello: 10Ne: 1s2, 2s2, 2p6 regla del octeto: 11Na:(Ne)10, 1s2, 2s2, 2p6, 3s2
Anomalias de configuración electrónica
Al desarrollar la configuración electrónica, encontramos una serie de excepciones, a las cuales consideramos como anomalías, entre estas tenemos:
Antisarrus (Antiserruchos)
Se presenta en elementos de los grupos VIB y IB
Ejemplo:
Grupo VIB:
24Cr 1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d4 : es incorrecto
24Cr 1s2, 2s2, 2p6, 3s2, 3p6, 4s1, 3d5 : es correcto
Grupo IB
29Cu: 1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d9 : es incorrecto
29Cu: 1s2, 2s2, 2p6, 3s2, 3p6, 4s1, 3d10 : es correcto

By pass
Un gran numero de elementos de transición interna presentan este fenómeno, donde el subnivel <> debe hacer transición al próximo subnivel <>
92U:(81Rn)7s2, 5f4 : es incorrecto
92U:(81Rn)7s2, 5f3, 6d1 : es correcto
64Gd:(54Xe)6s2, 4f8 : es incorrecto
64Gd:(54Xe)6s2, 4f7, 5d1 : es correcto

Energía Relativa de un Orbital
La energía asociada a las regiones orbitales depende de la suma de los números cuánticos principal y secundario.
ER: n + l
Donde:
n: nivel l: subnivel
Ejemplo:
4s: 4 + 0 : 4
3p: 3 + 1 : 4
4d: 4 + 2 : 6
5f: 5 + 3 : 8
Orbital o REEMPE
Es la región donde existe mayor posibilidad de encontrar como máximo 2 electrones que se mueven en forma paralela y en sentidos contrarios.
REEMPE: Es la
R egión de
E spacio
E nergético de
M anifestación
P robalistica del
E electrón